Ligand binding and substrate discrimination by UDP-galactopyranose mutase.
نویسندگان
چکیده
Galactofuranose (Galf) residues are present in cell wall glycoconjugates of numerous pathogenic microbes. Uridine 5'-diphosphate (UDP) Galf, the biosynthetic precursor of Galf-containing glycoconjugates, is produced from UDP-galactopyranose (UDP-Galp) by the flavoenzyme UDP-galactopyranose mutase (UGM). The gene encoding UGM (glf) is essential for the viability of pathogens, including Mycobacterium tuberculosis, and this finding underscores the need to understand how UGM functions. Considerable effort has been devoted to elucidating the catalytic mechanism of UGM, but progress has been hindered by a lack of structural data for an enzyme-substrate complex. Such data could reveal not only substrate binding interactions but how UGM can act preferentially on two very different substrates, UDP-Galp and UDP-Galf, yet avoid other structurally related UDP sugars present in the cell. Herein, we describe the first structure of a UGM-ligand complex, which provides insight into the catalytic mechanism and molecular basis for substrate selectivity. The structure of UGM from Klebsiella pneumoniae bound to the substrate analog UDP-glucose (UDP-Glc) was solved by X-ray crystallographic methods and refined to 2.5 A resolution. The ligand is proximal to the cofactor, a finding that is consistent with a proposed mechanism in which the reduced flavin engages in covalent catalysis. Despite this proximity, the glucose ring of the substrate analog is positioned such that it disfavors covalent catalysis. This orientation is consistent with data indicating that UDP-Glc is not a substrate for UGM. The relative binding orientations of UDP-Galp and UDP-Glc were compared using saturation transfer difference NMR. The results indicate that the uridine moiety occupies a similar location in both ligand complexes, and this relevant binding mode is defined by our structural data. In contrast, the orientations of the glucose and galactose sugar moieties differ. To understand the consequences of these differences, we derived a model for the productive UGM-substrate complex that highlights interactions that can contribute to catalysis and substrate discrimination.
منابع مشابه
Potent ligands for prokaryotic UDP-galactopyranose mutase that exploit an enzyme subsite.
UDP-galactopyranose mutase (UGM or Glf), which catalyzes the interconversion of UDP-galactopyranose and UDP-galactofuranose, is implicated in the viability and virulence of multiple pathogenic microorganisms. Here we report the synthesis of high-affinity ligands for UGM homologues from Klebsiella pneumoniae and Mycobacterium tuberculosis. The potency of these compounds stems from their ability ...
متن کاملSugar nucleotide recognition by Klebsiella pneumoniae UDP-D-galactopyranose mutase: fluorinated substrates, kinetics and equilibria.
A series of selectively fluorinated and other substituted UDP-D-galactose derivatives have been evaluated as substrates for Klebsiella pneumoniae UDP-D-galactopyranose mutase. This enzyme, which catalyses the interconversion of the pyranose and furanose forms of galactose as its UDP adduct, is a prospective drug target for a variety of microbial infections. We show that none of the 2''-, 3''- o...
متن کاملSubstrate-dependent dynamics of UDP-galactopyranose mutase: Implications for drug design.
Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease that represents one of the major health challenges of the Latin American countries. Successful efforts were made during the last few decades to control the transmission of this disease, but there is still no treatment for the 10 million adults in the chronic phase of the disease. In T. cruzi, as well as in ...
متن کاملIdentification of inhibitors for UDP-galactopyranose mutase.
The flavoenzyme uridine 5'-diphosphate (UDP)-galactopyranose mutase (UGM) plays a key role in the cell wall biosynthesis of many pathogens, including Mycobacterium tuberculosis. Using a synthetic fluorescent ligand, we screened 16 000 compounds in a fluorescence polarization assay. Effective inhibitors of UGM were identified.
متن کاملSite-directed mutagenesis of UDP-galactopyranose mutase reveals a critical role for the active-site, conserved arginine residues.
The flavoenzyme UDP-galactopyranose mutase (UGM) is a mediator of cell wall biosynthesis in many pathogenic microorganisms. UGM catalyzes a unique ring contraction reaction that results in the conversion of UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). UDP-Galf is an essential precursor to the galactofuranose residues found in many different cell wall glycoconjugates. Due to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 391 2 شماره
صفحات -
تاریخ انتشار 2009